Abstract

High storage density is an important requirement for resistive random access memory (RRAM) devices. Multilevel resistive switching (RS) in RRAMs does not require much change to current technologies compared with device size reduction and 3D integration. Herein, five stable resistance states can be obtained in a Pt/p-NiO/n+-Si memory device by controlling the current compliance (CC). The RS mechanism can be attributed to the formation and rupture of localized conducting filaments (CFs) in an NiO film. The conductivity of the low resistance states (LRS) is determined through the combined action of the P-N junction and localized CFs. The CC can be used to effectively modulate the formation of localized CFs and junction resistance. Importantly, different LRS have large differences in resistance values, resulting in multilevel memory. A model is suggested and discussed to account for the observed multilevel memory operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.