Abstract
In this work, the multilevel resistive random access memories (RRAMs) have been achieved by using the structure of Pt/MoO3/Hf/MoO3/Pt with four stable resistance states. The devices show good retention property of each state (>104 s) and large memory window (>104). The simulation and experimental study reveal that the resistive switching mechanism is ascribed to combination of the conductive filament in the stack of MoO3/Hf next to the top electrode and redox reaction at the interface of Hf/MoO3 next to bottom electrode. The fitting results of current–voltage characteristics under low sweep voltage indicate that the conduction of HRSs is dominated by the Poole–Frenkel emission and that of LRS is governed by the Ohmic conduction. Based on the RRAM, the tunable high-pass filter (HPF) with configurable filtering characteristics has been realized. The gain-frequency characteristics of the programmable HPF show that the filter has high resolution and wide programming range, demonstrating the viability of the multilevel RRAMs for future spiking neural network and shrinking the programmable filters with low power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.