Abstract
SummaryA two-level regression mixture model is discussed and contrasted with the conventional two-level regression model. Simulated and real data shed light on the modelling alternatives. The real data analyses investigate gender differences in mathematics achievement from the US National Education Longitudinal Survey. The two-level regression mixture analyses show that unobserved heterogeneity should not be presupposed to exist only at level 2 at the expense of level 1. Both the simulated and the real data analyses show that level 1 heterogeneity in the form of latent classes can be mistaken for level 2 heterogeneity in the form of the random effects that are used in conventional two-level regression analysis. Because of this, mixture models have an important role to play in multilevel regression analyses. Mixture models allow heterogeneity to be investigated more fully, more correctly attributing different portions of the heterogeneity to the different levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series A: Statistics in Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.