Abstract
We theoretically investigate the formation of the high-order fractional alignment echo in OCS molecule and systematically study the dependence of echo intensity on the intensities and time delay of the two excitation pulses. Our simulations reveal an intricate dependence of the intensity of high-order fractional alignment echo on the laser conditions. Based on the analysis with rotational density matrix, this intricate dependence is further demonstrated to arise from the interference of multiple quantum pathways that involve multilevel rotational transitions. Our result provides a comprehensive multilevel picture of the quantum dynamics of high-order fractional alignment echo in molecular ensembles, which will facilitate the development of "rotational echo spectroscopy."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.