Abstract

Multilevel optimization in the design of an instruction cache for a high-performance GaAs microprocessor is discussed. The performance of the system is maximized by concurrently considering the interrelationships of (1) the time of flight of signals across the multichip module on which the processor and cache chips are mounted, (2) the clocking scheme that synchronizes these signals, and (3) the size of the cache. These three design issues are normally considered independently because they arise in different abstraction levels. Design automation tools developed to facilitate this multilevel optimization are described. This process, applied to various subsystems, has been used to gain substantial performance improvement in the GaAs microcomputer.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.