Abstract
Peanut is one of the most important legume commodities in Indonesia. In its implementation, a lot of research has been done related to this plant. However, in studies conducted by growth models, it is very rarely studied. Therefore, researchers are interested in modeling the growth of peanuts. One of the models that can be used is a multilevel regression model for the case of repeated measurement data. Multilevel regression was chosen because it is considered to provide more information than other regression models. On the other hand, the nonlinear model was chosen based on the tendency of the initial plot of the data obtained. The research method used is a case study in the study of peanut growth. This study aims to build the best model based on the tested model. The Restricted Estimator Maximum Likelihood (REML) parameter estimation method was chosen because it is considered to have unbiased parameter estimates. The best model is based on the lowest Akaike Information Criterion (AIC) generated from a predetermined model. The results obtained indicate that the multilevel parabolic regression model is the model with the best AIC size. In addition, it was found that there was an Interclass Correlation (ICC) of 81.19% which indicated a difference in variability between levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.