Abstract

We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of abstract stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler-Maruyama discretization in time yields mean square convergence of order one in space and of order 1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh. © 2012 Springer Science + Business Media B.V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.