Abstract
We consider a model-dependent approach for multi-level modelling that accounts for informative probability sampling of first- and lower-level population units. The proposed approach consists of first extracting the hierarchical model holding for the sample data given the selected sample, as a function of the corresponding population model and the first- and lower-level sample selection probabilities, and then fitting the resulting sample model using Bayesian methods. An important implication of the use of the model holding for the sample is that the sample selection probabilities feature in the analysis as additional data that possibly strengthen the estimators. A simulation experiment is carried out in order to study the performance of this approach and compare it to the use of ‘design-based’ methods. The simulation study indicates that both approaches perform in general equally well in terms of point estimation, but the model-dependent approach yields confidence/credibility intervals with better coverage properties. Another simulation study assesses the impact of misspecification of the models assumed for the sample selection probabilities. The use of maximum likelihood estimation is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.