Abstract
The minimum cross entropy thresholding (MCET) has been widely applied in image processing. In this paper, a new multilevel MCET algorithm based on the artificial bee colony (ABC) algorithm is proposed. The proposed thresholding algorithm is called ABC-based MCET algorithm. Four different methods including the exhaustive search, the honey bee mating optimization (HBMO), the particle swarm optimization (PSO) and the quantum particle swarm optimization (QPSO) methods are also implemented for comparison with the results of the proposed method. The experimental results demonstrate that the proposed ABC-based MCET algorithm can efficiently search for multiple thresholds that are very close to the optimal ones selected by using the exhaustive search method. Compared with the other three thresholding methods, the segmentation results using the ABC-based MCET algorithm is the best. It is promising to encourage further research for applying the HBMO algorithm to complex problems of image processing and pattern recognition. DOI: http://dx.doi.org/10.11591/telkomnika.v11i9.3273
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA Indonesian Journal of Electrical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.