Abstract
We investigate the discretization in time of numerical schemes based on multilevel spatial splittings for the two-dimensional periodic Navier--Stokes equations. The approximate solution is computed as the sum of a low frequency component and a high frequency one. These two terms are advanced in time using different stepsizes. We show improved stability conditions (with respect to the classical Galerkin method). We derive error estimates that indicate that the high frequency term can be integrated less often. We address implementation issues and show that the method should yield a significant gain in computing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.