Abstract
We consider elliptic diffusion problems with a random anisotropic diffusion coefficient, where, in a notable direction given by a random vector field, the diffusion strength differs from the diffusion strength perpendicular to this notable direction. The Karhunen–Loeve expansion then yields a parametrisation of the random vector field and, therefore, also of the solution of the elliptic diffusion problem. We show that, given regularity of the elliptic diffusion problem, the decay of the Karhunen–Loeve expansion entirely determines the regularity of the solution’s dependence on the random parameter, also when considering this higher spatial regularity. This result then implies that multilevel quadrature methods may be used to lessen the computation complexity when approximating quantities of interest, like the solution’s mean or its second moment, while still yielding the expected rates of convergence. Numerical examples in three spatial dimensions are provided to validate the presented theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.