Abstract

Complex network has become an important way to analyze the massive disordered information of complex systems, and its community structure property is indispensable to discover the potential functionality of these systems. The research on uncovering the community structure of networks has attracted great attentions from various fields in recent years. Many community detection approaches have been proposed based on the modularity optimization. Among them, the algorithms which optimize one initial solution to a better one are easy to get into local optima. Moreover, the algorithms which are susceptible to the optimized order are easy to obtain unstable solutions. In addition, the algorithms which simultaneously optimize a population of solutions have high computational complexity, and thus they are difficult to apply to practical problems. To solve the above problems, in this study, we propose a fast memetic algorithm with multi-level learning strategies for community detection by optimizing modularity. The proposed algorithm adopts genetic algorithm to optimize a population of solutions and uses the proposed multi-level learning strategies to accelerate the optimization process. The multi-level learning strategies are devised based on the potential knowledge of the node, community and partition structures of networks, and they work on the network at nodes, communities and network partitions levels, respectively. Extensive experiments on both benchmarks and real-world networks demonstrate that compared with the state-of-the-art community detection algorithms, the proposed algorithm has effective performance on discovering the community structure of networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.