Abstract
AbstractRecently, Zhou et al. have proposed an Interpolation‐based (INTERP) strategy to generate the initial parameters for Quantum Approximate Optimization Algorithm (QAOA). INTERP guesses the initial parameters at level by applying interpolation to the optimized parameters at level , achieving better performance than random initialization (RI). Nevertheless, INTERP consumes extensive costs for deep QAOA because it necessitates optimization at each level depth. To address it, a Multilevel Leapfrogging Interpolation (MLI) strategy is proposed. MLI produces initial parameters from level to () at level , omitting the optimization rounds from level to . MLI executes optimization at few levels rather than each level, and this operation is called Multilevel Leapfrogging optimization (M‐Leap). The performance of MLI is investigated on the Maxcut problem. The simulation results demonstrate MLI achieves the same quasi‐optima as INTERP while consuming 1/2 of costs required by INTERP. Besides, for MLI, where there is no RI except for level 1, the greedy‐MLI strategy is presented. The simulation results suggest greedy‐MLI has better stability than INTERP and MLI beyond obtaining the quasi‐optima. According to the efficiency of finding the quasi‐optima, the idea of M‐Leap might be extended to other training tasks, especially those requiring numerous optimizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.