Abstract

In this paper, a framework based on two feature extraction networks and a multilevel feature fusion (MFF) network is proposed. Multilevel degradation features can be obtained through this method, and combined with the human visual perception system, the local and global feature information contained in these features can be captured, which is conducive to the prediction of distorted images. First, a restored image approximating a reference image is generated by a restorative generative adversarial network (GAN). Furthermore, the multilevel degradation features of distorted images and the restored image features are extracted by EfficientNet. Second, the features extracted by EfficientNet are input into the MFF network and are fully expressed by the top-down, bottom-up and third edge joining methods. Moreover, the features provide more low-level details and high-level semantic features for the prediction of image quality scores. In addition, after the MFF stage, the framework calculates the score of each branch feature and obtains the average quality score. Experimental results show that our method achieves greatly improved prediction accuracy and performance on five standard databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.