Abstract
Measures of classroom environments have become central to policy efforts that assess school and teacher quality. This has sparked a wide interest in using multilevel factor analysis to test measurement hypotheses about classroom-level variables. One approach partitions the total covariance matrix and tests models separately on the between-classroom and within-classroom levels. This article shows that when using this approach, robust test statistics, including rescaled and residual-based test statistics provide better inferences about the classroom-level measurement structure than the widely used likelihood ratio test statistic even when the number of classrooms is large, and there is no excess kurtosis in the observed variables. This article then presents an empirical example and a simulation study to demonstrate how item intraclass correlations and within-group sample sizes influence test statistic performance. The results have implications for the study of classroom environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.