Abstract
We demonstrate, using optimal control theory, that perfect isotope-selective molecular vibrational excitations on the ground-state potential curve in multilevel systems can be completed in much shorter time scales than those in two-level systems. We consider a gaseous isotopic mixture of cesium iodide ( 133CsI and 135CsI) and, using two-level and multilevel systems, try to obtain electric fields that drive different isotopes into different vibrational levels. As a result, we find that in multilevel systems isotope-selective excitation processes can be controlled much faster, which we call multilevel effect. It is likely that this effect makes use of the large isotope shifts of higher vibrational levels than the lowest two.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.