Abstract

In today’s accelerating urbanization process, timely and effective monitoring of land-cover dynamics, landscape pattern analysis, and evaluation of built-up urban areas (BUAs) have important research significance and practical value for the sustainable development, planning and management, and ecological protection of cities. High-spatial-resolution remote sensing (HRRS) images have the advantages of high-accuracy Earth observations, covering a large area, and having a short playback period, and they can objectively and accurately provide fine dynamic spatial information about the land cover in urban built-up areas. However, the complexity and comprehensiveness of the urban structure have led to a single-scale analysis method, which makes it difficult to accurately and comprehensively reflect the characteristics of the BUA landscape pattern. Therefore, in this study, a joint evaluation method for an urban land-cover spatiotemporal-mapping chain and multi-scale landscape pattern using high-resolution remote sensing imagery was developed. First, a pixel–object–knowledge model with temporal and spatial classifications was proposed for the spatiotemporal mapping of urban land cover. Based on this, a multi-scale district–BUA–city block–land cover type map of the city was established and a joint multi-scale evaluation index was constructed for the multi-scale dynamic analysis of the urban landscape pattern. The accuracies of the land cover in 2016 and 2021 were 91.9% and 90.4%, respectively, and the kappa coefficients were 0.90 and 0.88, respectively, indicating that the method can provide effective and reliable information for spatial mapping and landscape pattern analysis. In addition, the multi-scale analysis of the urban landscape pattern revealed that, during the period of 2016–2021, Beijing maintained the same high urbanization rate in the inner part of the city, while the outer part of the city kept expanding, which also reflects the validity and comprehensiveness of the analysis method developed in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.