Abstract

The increasing demand for large-scale integrated logic systems urges the development of multireadout molecular logic gates. Especially, it is of great significance to explore dual-readout logic devices with both fluorescence (FL) and magnetic resonance (MR) signals as measurable outputs, since the signal combination of FL/MR might render molecular logic devices better practicality in biomedical applications. In this study, holmium(III)-doped carbon nanodots (Ho-CDs), which exhibited pH-responsive behaviors in both FL and MR signals, were synthesized by a facile one-pot pyrolysis method. When triggered by H+, Fe3+, or Fe2+, the Ho-CDs served as a switch for both FL and MR signals, leading to dual-readout and multiaddressable logic gates. A series of elementary Boolean operations including YES, NOT, OR, NOR, XOR, PASS 0, and INH have been successfully demonstrated by varying the chemical inputs of H+/Fe3+/Fe2+. More importantly, multilevel integrative Boolean operations with higher functions (NOR-INH and MR (XOR + INH)-OR), which realize the concatenation of different logic gates, have also been successfully demonstrated. This study may pave an avenue to design multilevel, dual-readout molecular logic systems with better operation stability, which hold great potential for biomedical applications in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call