Abstract

We have demonstrated conductance switching between multilevel states in devices based on Rose Bengal molecules embedded in supramolecular matrices. Two mechanisms, namely electroreduction and conformational change of the molecules, resulting in conjugation modification have been proposed to be applicable in these devices. In a low voltage region, reverse-bias induced electroreduction of Rose Bengal facilitated conjugation restoration in the backbone of the molecule and, hence, switching to a high-conducting state. At high biases, the two perpendicular planes present in Rose Bengal, which have permanent dipole moments, allowed forward-bias induced conformation change to occur, and results in conductance switching. We have demonstrated how the devices can switch between two pair of conducting states for random-access memory and read-only memory applications for several hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.