Abstract
Cloud detection is one of the important tasks for remote sensing image processing. In this paper, a novel multilevel cloud detection method based on deep learning is proposed for remote sensing images. First, the simple linear iterative clustering (SLIC) method is improved to segment the image into good quality superpixels. Then, a deep convolutional neural network (CNN) with two branches is designed to extract the multiscale features from each superpixel and predict the superpixel as one of three classes including thick cloud, thin cloud, and noncloud. Finally, the predictions of all the superpixels in the image yield the cloud detection result. In the proposed cloud detection framework, the improved SLIC method can obtain accurate cloud boundaries by optimizing initial cluster centers, designing dynamic distance measure, and expanding search space. Moreover, different from traditional cloud detection methods that cannot achieve multilevel detection of cloud, the designed deep CNN model can not only detect cloud but also distinguish thin cloud from thick cloud. Experimental results indicate that the proposed method can detect cloud with higher accuracy and robustness than compared methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.