Abstract

This paper presents a simple analytical model for predicting on-chip cache hierarchy effectiveness in chip multiprocessors (CMP) for a state-of-the-art architecture. Given the complexity of this type of systems, we use rough approximations, such as the empirical observation that the re-reference timing pattern follows a power law and the assumption of a simplistic delay model for the cache, in order to provide a useful model for the memory hierarchy responsiveness. This model enables the analytical determination of average access time, which makes design space pruning useful before sweeping the vast design space of this class of systems. The model is also useful for predicting cache hierarchy behavior in future systems. The fidelity of the model has been validated using a state-of-the-art, full-system simulation environment, on a system with up to sixteen out-of-order processors with cache-coherent caches and using a broad spectrum of applications, including complex multithread workloads. This simple model can predict a near-to-optimal, on-chip cache distribution while also estimating how future system running future applications might behave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.