Abstract

Statistical shape and appearance models are often based on the accurate identification of one-to-one correspondences in a training data set. At the same time, the determination of these corresponding landmarks is the most challenging part of such methods. Hufnagel et al. 1 developed an alternative method using correspondence probabilities for a statistical shape model. In Kruuger et al. 2, 3 we propose the use of probabilistic correspondences for statistical appearance models by incorporating appearance information into the framework. We employ a point-based representation of image data combining position and appearance information. The model is optimized and adapted by a maximum a-posteriori (MAP) approach deriving a single global optimization criterion with respect to model parameters and observation dependent parameters that directly affects shape and appearance information of the considered structures. Because initially unknown correspondence probabilities are used and a higher number of degrees of freedom is introduced to the model a regularization of the model generation process is advantageous. For this purpose we extend the derived global criterion by a regularization term which penalizes implausible topological changes. Furthermore, we propose a multi-level approach for the optimization, to increase the robustness of the model generation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.