Abstract

This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labeled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into the graphs' structure and helps contextualized detected event. For evaluation, two new hierarchical detectors are tested against a baseline Gaussian method on a synthetic graph sequence with seeded anomalies. We demonstrate that in a labeled setting with community structure, our graph statistics-based approach outperforms both a distribution-based detector and the baseline, accurately detecting anomalies at the node, subgraph, and graph levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.