Abstract
Automatic image annotation is a promising solution to enable semantic image retrieval via keywords. In this paper, we propose a multi-level approach to annotate the semantics of natural scenes by using both the dominant image components (salient objects) and the relevant semantic concepts. To achieve automatic image annotation at the content level, we use salient objects as the dominant image components for image content representation and feature extraction. To support automatic image annotation at the concept level, a novel image classification technique is developed to map the images into the most relevant semantic image concepts. In addition, Support Vector Machine (SVM) classifiers are used to learn the detection functions for the pre-defined salient objects and finite mixture models are used for semantic concept interpretation and modeling. An adaptive EM algorithm has been proposed to determine the optimal model structure and model parameters simultaneously. We have also demonstrated that our algorithms are very effective to enable multi-level annotation of natural scenes in a large-scale image dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.