Abstract

Supersaturated designs (SSDs) constitute an important class of fractional factorial designs that could be extremely useful in factor screening experiments. Most of the existing studies have focused on balanced designs. This paper provides a new lower bound for the \(E(f_{NOD})\)-optimality measure of SSDs with general run sizes. This bound is a generalization of existing bounds since it is applicable to both balanced and unbalanced designs. Optimal multi and mixed-level, balanced and nearly balanced SSDs are constructed by applying a k-circulant type methodology. Necessary and sufficient conditions are introduced for the generator vectors, in order to pre-ensure the optimality of the constructed k-circulant SSDs. The provided lower bounds were used to measure the efficiency of the generated designs. The presented methodology leads to a number of new families of improved SSDs, providing tools for directly constructing optimal or nearly-optimal k-circulant designs by just checking the corresponding generator vector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.