Abstract

Discontinuous Galerkin (DG) method is presented for numerical modeling of melt migration in a chemically reactive and viscously deforming upwelling mantle column at local chemical equilibrium. DG methods for both advection and elliptic equations provide a robust and efficient solution to the problems of melt migration in the asthenospheric upper mantle. Assembling and solving the elliptic equation is the major bottleneck in these computations. To address this issue, adaptive mesh refinement and local time-stepping methods have been proposed to improve the computational wall time. The robustness of DG methods is demonstrated through two benchmark problems by modeling detailed structure of high-porosity dissolution channels and compaction dissolution waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.