Abstract

A self-supervised image segmentation method by a non-dominated sorting genetic algorithm-II (NSGA-II) based optimized MUSIG (OptiMUSIG) activation function with a multilayer self-organizing neural network (MLSONN) architecture is proposed to segment multilevel gray scale images. In the same way, another NSGA-II based parallel version of the OptiMUSIG (ParaOptiMUSIG) activation function with a parallel self-organizing neural network (PSONN) architecture is purported to segment the color images in this article. These methods are intended to overcome the drawback of their single objective based counterparts. Three standard objective functions are employed as the multiple objective criteria of the NSGA-II algorithm to measure the quality of the segmented images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.