Abstract

<p>I will expose some possibilities regarding the use of metallic probes of different lengths in GPR and TDR prospecting. With regard to GPR, multi-length probes are dipole-like antennas whose length can be changed by means of switches. The switches can be implemented with PIN diodes, and can act as electronic “knifes”. Therefore, they allow to cut (switched off) or prolong (switched on) the branches of a couple of antennas, and this allows to have more couples of equivalent antennas making use of a unique physical couple of antennas. This allows to contain the size of the system. In particular, a reconfigurable prototypal stepped frequency GPR system was developed within the project AITECH (http://www.aitechnet.com/ibam.html)  and was tested in several cases histories  [1-3]. Within this reconfigurable GPR, it is also possible to reconfigure vs. the frequency the integration times of the harmonic tones constituting the radiated signal. This feature allows to reject external electromagnetic interferences without filtering the spectrum of the received signal [4] and without increasing the radiated power.</p><p>With regard to TDR measurements, a multi-length probe consists of a TDR device where the rods (in multi-wire version) or the length of internal and external conductor (in coaxial version) can be changed. This can be useful for the measurements of electromagnetic characteristics of a material under test (MUT), in particular its dielectric permittivity and magnetic permeability, both meant in general as complex quantities. Multi-length TDR measurements allow to acquire independent information on the MUT even at single frequency, and this can be of interest in the case of dispersive materials [5-6].</p><p><strong>Acknowledgements</strong></p><p>I collaborated with several colleagues about the above issues. To list of them would be long, so I will just mention their affiliations: Florence Engineering srl, University of Florence, IDSGeoradar srl, 3d-radar Ltd, Institute for Archaeological and Monumental Heritage IBAM-CNR, University of Bari, University of Malta. Finally, a particular mention is deserved for the Cost Action TU1208.</p><p><strong>References</strong></p><p>[1] R. Persico, M. Ciminale, L. Matera, A new reconfigurable stepped frequency GPR system, possibilities and issues; applications to two different Cultural Heritage Resources, Near Surface Geophysics, <strong>12</strong>, 793-801, 2014.</p><p>[2] L. Matera, M. Noviello, M. Ciminale, R. Persico, Integration of multisensor data: an experiment in the archaeological park of Egnazia (Apulia, Southern Italy), Near Surface Geophysics, <strong>13</strong>, 613-621, 2015.</p><p>[3] R. Persico, S. D'Amico, L. Matera, E. Colica, C. De, Giorgio, A. Alescio, C. Sammut and P. Galea, P. (2019), GPR Investigations at St John's Co‐Cathedral in Valletta, Near Surface Geophysics, <strong>17</strong>, 213-229, 2019.</p><p>[4] R. Persico, D. Dei, F. Parrini, L. Matera, Mitigation of narrow band interferences by means of a reconfigurable stepped frequency GPR system, Radio Science, <strong>51</strong>, 2016.</p><p>[5] R. Persico, M. Pieraccini, Measurement of dielectric and magnetic properties of Materials by means of a TDR probe, Near Surface Geophysics, <strong>16</strong>,1-9, 2018.</p><p>[6] R. Persico, I. Farhat, L. Farrugia, S. d’Amico, C. Sammut, An innovative use of TDR probes: First numerical validations with a coaxial cable, Journal of Environmental & Engineering Geophysics, <strong>23</strong>, 437-442, 2018.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.