Abstract

Materials that provide spatial and temporal control over the delivery of DNA and other nucleic acid-based agents from surfaces play important roles in the development of localized gene-based therapies. This review focuses on a relatively new approach to the immobilization and release of DNA from surfaces: methods based on the layer-by-layer assembly of thin multilayered films (or polyelectrolyte multilayers, PEMs). Layer-by-layer methods provide convenient, nanometer-scale control over the incorporation of DNA, RNA, and oligonucleotide constructs into thin polyelectrolyte films. Provided that these assemblies can be designed in ways that permit controlled film disassembly under physiological conditions, this approach can contribute new methods for spatial and/or temporal control over the delivery of nucleic acid-based therapeutics in vitro and in vivo. We describe applications of layer-by-layer assembly to the fabrication of DNA-containing films that can be used to provide control over the release of plasmid DNA from the surfaces of macroscopic objects and promote surface-mediated cell transfection. We also highlight the application of these methods to the coating of colloidal substrates and the fabrication of hollow micrometer-scale capsules that can be used to encapsulate and control the release or delivery of DNA and oligonucleotides. Current challenges, gaps in knowledge, and new opportunities for the development of these methods in the general area of gene delivery are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call