Abstract
This work deals with advanced finite element (FE) formulations for the analysis of multilayered structures in the case of multifield problems. The following four fields are considered: mechanical, thermal, electrical and magnetic. Constitutive equations, in terms of coupled mechanical–thermal–electrical–magnetic field variables, are obtained on the basis of a thermodynamic approach. The four-field principle of virtual displacements is employed to derive FE matrices. Three-fields, two-fields as well as pure mechanical problems have been discussed as relevant particular cases. A condensed notation, known as Carrera unified formulation, has been employed to establish a comprehensive two-dimensional modeling with variable kinematic features. Layer-wise/equivalent single layers plate elements have been developed according to linear up to fourth-order expansion in the layer/plate thickness directions. FE matrices have been obtained in terms of a few fundamental nuclei whose dimension is 6×6 for the full four fields case. Numerical results show the effectiveness of the proposed implementation by encompassing various static and dynamic multifield plate problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.