Abstract
A multilayered smart epoxy coating for corrosion prevention of carbon steel was developed and characterized. Toward this direction, as a first step, zinc-aluminum nitrate-layered double hydroxide (Zn/Al LDH) was synthesized using the hydrothermal crystallization technique and then loaded with dodecylamine (DOD), which was used as an inhibitor (pH-sensitive). Similarly, the synthesis of the urea-formaldehyde microcapsules (UFMCs) has been carried out using the in-situ polymerization method, and then the microcapsules (LAUFCs) were encapsulated with linalyl acetate (LA) as a self-healing agent. Finally, the loaded Zn/Al LDH (3 wt %) and modified LAUFCs (5 wt %) were reinforced into an epoxy matrix to develop a double-layer coating (DL-EP). For an exact comparison, pre-layer epoxy coatings comprising 3 wt % of the loaded Zn/Al LDH (referred to as LDH-EP), top-layer epoxy coatings comprising 5 wt % linalyl acetate urea-formaldehyde microcapsules (referred to as UFMLA COAT), and a blank epoxy coating (reference coating) were also developed. The developed epoxy coatings were characterized using various techniques such as XRD, XPS, BET, TGA, FTIR, EIS, etc. Electrochemical tests performed on the synthesized coatings indicate that the DL-EP demonstrates improved self-healing properties compared to LDH-EP and UFMLA COAT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ACS Omega
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.