Abstract

Multifunctional wearable devices detect electric signals responsive to various biological stimuli and monitor present body motions or conditions, necessitating flexible materials with high sensitivity and sustainable operation. Although various dielectric polymers have been utilized in self-powered wearable applications in response to multiple external stimuli, their intrinsic limitations hinder further device performance enhancement. Because triboelectric devices comprising dielectric polymers are based on triboelectrification and electrostatic induction, multilayer-stacking structures of dielectric polymers enable significant improvements in device performance owing to enhanced interfacial polarization through dissimilar permittivity and conductivity between each layer, resulting in self-powered high-performance wearable devices. Moreover, novel triboelectric polymers with unique chemical structures or nano-additives can control interfacial polarization, allowing wearable devices to respond to multiple external stimuli. This review summarizes the recent insights into multilayered functional triboelectric polymers, including their fundamental dielectric principles and diverse applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call