Abstract

This paper discusses synthesis and application of dual functional SiO2@Au@SiO2@QD composite nanoparticles for integrated intracellular heating with temperature motoring. The particles are of multilayered concentric structure, consisting of Au nanoshells covered with quantum dots, with the former for infrared heating through localized surface plasma resonance while the later for temperature monitoring. The key to integrate plasmonic-heating/thermal-monitoring on a single composite nanoparticle is to ensure that the quantum dots be separated at a certain distance away from the Au shell surface in order to ensure a detectable quantum yield. Direct attachment of the quantum dots onto the Au shell would render the quantum dots practically functionless for temperature monitoring. To integrate quantum dots into Au nanoshells, a quantum quenching barrier of SiO2 was created by modifying a Stöber-like process. Materials, optical and thermal characterization was made of these composite nanoparticles. Cellular uptake of the nanoparticles was discussed. Experiments were performed on simultaneous in vitro heating and temperature monitoring in a cell internalized with the dual-functional SiO2@Au@SiO2@QD composite nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.