Abstract

The optical properties of dielectric-metal-dielectric (DMD) transparent electrodes are investigated from the perspectives of organic light-emitting diodes (OLEDs). A joint experimental and theoretical study showed that the optical characteristics of OLEDs based on DMD electrodes can be widely tuned to fulfill the requirements of a target application through careful control of the microcavity effect, transmittance of DMD electrodes, and a correlation of these two factors with the emission spectra of the emitted materials. Upon variation of the DMD structure, near-Lambertian emission and a 100% improvement in the luminous efficiency are demonstrated, respectively. Optimization strategies are also discussed that are relevant to forward luminous efficiency, total optical power, and angular/ spectral characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.