Abstract

Tape casting is conventionally used to prepare individual, relatively thick components (i.e., the anode or electrolyte supporting layer) for solid oxide fuel cells (SOFCs). In this research, a multilayer ceramic structure is prepared by sequentially tape casting ceramic slurries of different compositions onto a Mylar carrier followed by co-sintering at 1400 °C. The resulting half-cells contains a 300 μm thick NiO–yttria-stabilized zirconia (YSZ) anode support, a 20 μm NiO–YSZ anode functional layer, and an 8 μm YSZ electrolyte membrane. Complete SOFCs are obtained after applying a Gd0.1Ce0.9O2 (GDC) barrier layer and a Sm0.5Sr0.5CoO3 (SSC) -GDC cathode by using a wet-slurry spray method. The 50 mm × 50 mm SOFCs produce peak power densities of 337, 554, 772, and 923 mW/cm2 at 600, 650, 700, and 750 °C, respectively, on hydrogen fuel. A short stack including four 100 mm × 150 mm cells is assembled and tested. Each stack repeat unit (one cell and one interconnect) generates around 28.5 W of electrical power at a 300 mA/cm2 current density and 700 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.