Abstract
Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. Nonstandard multilayer graph clustering methods are needed for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a multilayer spectral graph clustering (SGC) framework that performs convex layer aggregation. Under a multilayer signal-plus-noise model, we provide a phase transition analysis of clustering reliability. Moreover, we use the phase transition criterion to propose a multilayer iterative model order selection algorithm (MIMOSA) for multilayer SGC, which features automated cluster assignment and layer weight adaptation, and provides statistical clustering reliability guarantees. Numerical simulations on synthetic multilayer graphs verify the phase transition analysis, and experiments on real-world multilayer graphs show that MIMOSA is competitive or better than other clustering methods.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Signal and Information Processing over Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.