Abstract

Inspired by molecular self-assemblies in nature, this article reports a versatile strategy for confined encapsulation of single-atomic metal into high-quality rGO nanosheets by the microwave-assisted emulsion micelle method. Multilayer self-assembly of organometallics-surfactants micelles into the interlayer of nanosheets can not only promote microwave exfoliation and reduction of GO but also precisely control loading and distribution of single-metal atoms. With this synthetic strategy, the simultaneous trinity of exfoliation, reduction, and composition are achieved for 1min. Experimental results and density functional theory calculations demonstrate that graphene-supported FeN4 O2 sites exhibit optimal binding energy toward superior selective adsorption (adsorption amount of 1975.6mg g-1 with separation efficiency of 97.6%) and electrocatalytic oxidation (TOFs as high as 1.31 min-1 ). This work provides a simple and efficient avenue for the large-scale preparation of single-atomic metal composites in environmental and energy fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.