Abstract

By adding ethanol gas to oxygen-based chemistry, the controllability of resist profile and the overetch characteristic, under the condition with nearly no areas of material to be etched (etchable area), are improved. A model for resist profile control in which the resist profile is determined by the ratio of the sum of the isotropic etching component and the isotropic deposition component to the anisotropic etching component, is examined by evaluating the dependence of the resist profile and the etching rate on gas composition, the product of ion energy and ion current density (ion impact), and line and space (L & S) width. Both the gas composition and L & S width affect the sum of isotropic components. Ion impact affects the anisotropic etching component. When the isotropic components are balanced, resist profile is independent of ion impact and L & S width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.