Abstract
Polarimetric synthetic aperture radar (PolSAR) image classification is a vital application in remote sensing image processing. In general, PolSAR image classification is actually a high-dimensional nonlinear mapping problem. The methods based on sparse representation and deep learning have shown a great potential for PolSAR image classification. Therefore, a novel PolSAR image classification method based on multilayer projective dictionary pair learning (MDPL) and sparse autoencoder (SAE) is proposed in this paper. First, MDPL is used to extract features, and the abstract degree of the extracted features is high. Second, in order to get the nonlinear relationship between elements of feature vectors in an adaptive way, SAE is also used in this paper. Three PolSAR images are used to test the effectiveness of our method. Compared with several state-of-the-art methods, our method achieves very competitive results in PolSAR image classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.