Abstract

A kind of novel multi-layer piezoelectric actuator is proposed and integrated with control- lable constrained damping treatment to perform hybrid vibration control.The governing equation of the system is derived based on the constitutive equations of elastic,viscoelastic and piezoelectric materials,which shows that the magnitude of control force exerted by multi-layer piezoelectric actua- tor is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage.This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage.The optimal location placement of the multi-layer piezoelectric actuator is also discussed.As an example,the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally.The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low fre- quency modal vibration of the experimental thin-plate structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call