Abstract
In this paper, a combustion temperature retrieval approximation for high-resolution infrared ground-based measurements has been developed based on a multilayer perceptron (MLP) technique. The introduction of a selection subset of features is mandatory due to the problems related to the high dimensionality data and the worse performance of MLPs with this high input dimensionality. Principal component analysis is used to reduce the input data dimensionality, selecting the physically important features in order to improve MLP performance. The use of a priori physical information over other methods in the chosen feature's phase has been tested and has appeared jointly with the MLP technique as a good alternative for this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.