Abstract
In this paper, training the derivative of a feedforward neural network with the extended backpropagation algorithm is presented. The method is used to solve a class of first-order partial differential equations for input-to-state linearizable or approximate linearizable systems. The solution of the differential equation, together with the Lie derivatives, yields a change of coordinates. A feedback control law is then designed to keep the system in a desired behavior. The examination of the proposed method, through simulations, exhibits the advantages of it. They include easily and quickly finding approximate solutions for complicated first-order partial differential equations. Therefore, the work presented here can benefit the design of the class of nonlinear control systems, where the nontrivial solutions of the partial differential equations are difficult to find.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.