Abstract
In this paper, multilayer neural network synchronized session key based encryption has been proposed for wireless communication of data/information. Multilayer perceptron transmitting systems at both ends accept an identical input vector, generate an output bit and the network are trained based on the output bit which is used to form a protected variable length secret-key. For each session, different hidden layer of multilayer neural network is selected randomly and weights or hidden units of this selected hidden layer help to form a secret session key. The plain text is encrypted through chaining , cascaded xoring of multilayer perceptron generated session key. If size of the final block of plain text is less than the size of the key then this block is kept unaltered. Receiver will use identical multilayer perceptron generated session key for performing deciphering process for getting the plain text. Parametric tests have been done and results are compared in terms of Chi-Square test, response time in transmission with some existing classical techniques, which shows comparable results for the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.