Abstract
This manuscript proposes a new approach for unveiling existing linkages within the international oil market across multiple driving factors beyond production. A multi-layer, multi-country network is extracted through a novel Bayesian graphical vector autoregressive model, which allows for a more comprehensive, dynamic representation of the network linkages than traditional or static pairwise Granger-causal inference approaches. Building on the complementary strengths in Espinasa et al. (2017) and Rousan et al. (2018), the layers of the network include country- and region-specific oil production levels and rigs, both through simultaneous and lagged temporal dependences among key factors, while controlling for oil prices and a world economic activity index. The proposed approach extracts relationships across all variables through a dynamic, cross-regional network. This approach is highly scalable, and adjusts for time-evolving linkages. The model outcome is a set of time-varying graphical networks which unveil both static representations of world oil linkages and variations in micro-economic relationships both within and between oil producers. An example is provided, illustrating the evolution of intra- and inter-regional relationships for two major inter- connected oil producers: the United States, with a regional decomposition of its production and rig deployment, and Arabian Peninsula and key middle east producers, with a country-based decomposition of production and rig deployment, while controlling for oil prices and global economic indices. Production is less affected to concurrent changes in oil prices and the overall economy than rigs. However, production is a lagged driver for prices, rather than rigs, which indicates that the linkage between rigs and production may not be fully accounted for in the markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.