Abstract

Biologically versatile basic fibroblast growth factor (bFGF), well known for roles of signaling molecules between cells and regulating various cellular processes, has been proven to utilize specific functionalities. However, the remarkable functions are inclinable to dwindle with decrease of bFGFs' activity. In nanoscale, developing thin films with intrinsic characteristics of building molecules can facilitate handling various materials for desired purposes. Fabricating nanofilm and handling sensitive materials without detriment to activity via highly productive manufacturing are significant for practical uses in the field of biomedical applications. Herein, a multilayered nanofilm fabricating system is developed by inkjet printing to incorporate bFGF successfully. It is demonstrated that water mixed with glycerol as biological ink maintains stability of bFGFs through simulation and experimental study. With highly stable bFGFs, the proliferation of human dermal fibroblast is enhanced and the undifferentiated state of induced pluripotent stem cell is maintained by the controlled release of bFGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.