Abstract

Multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory is a rigorous and powerful method to simulate quantum dynamics in complex many-body systems. This approach extends the original MCTDH theory of Meyer, Manthe, and Cederbaum to include dynamically contracted layers in a recursive way, within which the equations of motion are determined from the Dirac-Frenkel variational principle. This paper presents the general derivation of the theory and analyzes the important features that make the ML-MCTDH method numerically efficient. Furthermore, we discuss the generalization of the theory to treat many-body identical particles (fermions or bosons) as well as calculating energy eigenstates via the improved relaxation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.