Abstract

In this work, full-dimensional (9D) quantum dynamics calculations on mode-/bond-specific surface scattering of a water molecule on a copper (111) rigid surface are performed through the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. To easily perform the ML-MCTDH calculations on such a triatomic molecule-surface system, we first choose specific Jacobi coordinates as a set of coordinates of water. Next, to efficiently perform the 9D ML-MCTDH wavepacket propagation, the potential energy surface is transferred to a canonical polyadic decomposition form with the aid of a Monte Carlo-based method. Excitation-specific dissociation probabilities of H2O on Cu(111) are computed, and mode-/bond-specific dynamics are demonstrated by comparison with a probability curve computed for a water molecule in the ground state. The dependence of the dissociation probability of the initial state of H2O is studied, and it is found that the excitation-specific dissociation probabilities can be divided into three groups. We find that the vibrationally excited states enhance the dissociation reactivity of H2O, while the rotationally excited states hardly influence it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.