Abstract

Studies on the interaction between gold nanoparticles (AuNPs) and functional proteins have been useful in developing diagnostic and therapeutic agents. Such studies require a realistic computational model of AuNPs for successful molecular design works. This study offers a new multilayer model of AuNPs to address the inconsistency between its molecular mechanics' interpretation and AuNP's plasmonic nature. We performed partial charge quantum calculation of AuNPs using Au13 and Au55 models. The result showed that it has partial negative charges on the surface and partial positive charges on the inner part, indicating that the AuNP model should be composed of multiatom types. We tested the partial charge parameters of these gold (Au) atoms in classical molecular dynamics simulation (CMD) of AuNPs. The result showed that our parameters performed better in simulating the adsorption of Na+ and dicarboxy acetone in terms of consistency with surface charge density than the zero charges Au in the interface force field (IFF). We proposed that the multiple-charged AuNP model can be developed further into a simpler four-atom type of Au in a larger AuNP size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.