Abstract
Cadaveric dissection is the gold standard for training physicians in various surgical specialties. However, limitations in acquiring and storing sufficient cadaveric material, recent pressures in training opportunities, and progress in digital image technology have led to advances in virtual or artificial visual means to augment surgical training. For training neurosurgeons, the appearance of reality is still crucial for learning anatomic structures and procedures. We developed a four-dimensional (including time) multilayer digital image reconstruction technology (MIGRT) that allows users to manipulate a "volumetric" set of photographic image data from exquisite cadaveric intracranial dissections and to navigate through stages of neurosurgical procedures as the dissection progresses. A robotic microscope with two digital cameras was used to capture dissection images, usually in stereoscopic mode. A grid space was created to define positions at which images are captured. Images were acquired from identical angles at the same grid coordinates but at different stages of various dissections. Image data are reconstructed according to the sequence of acquisition into a multilayer image grid system by the MIGRT software. The single interactive, four-dimensional montage is viewable a on common computer platform. MIGRT uniquely focuses on capturing anatomic content that preserves natural appearances, including procedure, texture, and color, which is far superior and preferable to images and a reconstructed image environment based on artificial or animated concepts. MIGRT shows time-dependent changes in procedures, provides depth perception by stereoscopy or unique sequential motion, and allows simultaneous interactivity at each step of the procedure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.