Abstract
This work presents the analysis of significant sentiments and attitudes of people towards the COVID-19 vaccination. The tweeter messages related to the COVID-19 vaccine is used for sentiment evaluation in this work. The proposed work consists of two steps: (i) natural processing language (NLP) and (ii) classification. The NLP is utilized for text pre-processing, tokenization, data labelling, and feature extraction. Further, a stack-based ensemble machine learning model is used to classify sentiments as positive, negative, or neutral. The stack ensemble machine learning model includes seven heterogeneous machine learning techniques namely, Naive Bayes, Logistic regression, Decision Tree, Random Forest, AdaBoost Classifier, Gradient Boosting, and extreme Gradient Boosting (XGB). The highest classification accuracy of 97.2%, 88.34%, 88.22%, 85.23%, 86.30%, 87.54%, 86.63%, and 88.78% is achieved by ensemble machine learning model, Logistic regression, AdaBoost, Decision Tree, Naive Bayes, Random Forest, Gradient Boosting, and XGB Classifier, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.